Algebraic Entropy and the Action of Mapping Class Groups on Character Varieties

نویسنده

  • Asaf Hadari
چکیده

We extend the definition of algebraic entropy to endomorphisms of affine varieties. We calculate algebraic entropy of the action of elements of mapping class groups on various character varieties, and show that it is equal to a quantity we call the spectral radius, a generalization of the dilatation of a Pseudo-Anosov mapping class. Our calculations are compatible with all known calculations of the topological entropy of this action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Algebraic Entropy of the Special Linear Character Automorphisms of a Free Group on Two Generators

In this note, we establish a connection between the dynamical degree, or algebraic entropy of a certain class of polynomial automorphisms of R3, and the maximum topological entropy of the action when restricted to compact invariant subvarieties. Indeed, when there is no cancellation of leading terms in the successive iterates of the polynomial automorphism, the two quantities are equal. In gene...

متن کامل

Algebraic Description of Character Varieties

We find finite, reasonably small, explicit generator sets of the coordinate rings of G-character varieties of finitely generated groups for all classical groups G. This result together with the method of Gröbner basis gives an algorithm for describing character varieties by explicit polynomial equations. For a reductive group G over a field K, denote the G-character variety of a finitely genera...

متن کامل

Homological Action of the Modular Group on Some Cubic Moduli Spaces

We describe the action of the automorphism group of the complex cubic x + y + x − xyz − 2 on the homology of its fibers. This action includes the action of the mapping class group of a punctured torus on the subvarieties of its SL(2, C) character variety given by fixing the trace of the peripheral element (socalled “relative character varieties”). This mapping class group is isomorphic to PGL(2...

متن کامل

On the Dynamics of Pseudo-anosov Homeomorphisms on Representation Varieties of Surface Groups

We study the action of pseudo-Anosov homeomorphisms f : R → R on the character varieties of SL(2,C) -representations of the fundamental groups π1(R) of closed orientable hyperbolic surfaces R . We prove that the representation π1(R) →֒ SL(2,C) corresponding to the holonomy representation of the hyperbolic structure on the mapping torus of f is a hyperbolic fixed point for the action of f on the ...

متن کامل

Groups whose set of vanishing elements is exactly a conjugacy class

‎Let $G$ be a finite group‎. ‎We say that an element $g$ in $G$ is a vanishing element if there exists some irreducible character $chi$ of $G$ such that $chi(g)=0$‎. ‎In this paper‎, ‎we classify groups whose set of vanishing elements is exactly a conjugacy class‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008